
Organizational Information Systems Design and Implementation with
Contextual Constraint Logic Programming

Salvador Abreu ∗ and Daniel Diaz † and Vitor Nogueira ∗

∗ Universidade de Évora and CENTRIA, Portugal
{spa,vbn}@di.uevora.pt

† Université de Paris I and INRIA, France
Daniel.Diaz@univ-paris1.fr

Abstract

In this article we claim that Contextual Constraint Logic Pro-
gramming (CCxLP for short) is a powerful paradigm in which
to design and implement Organizational Information Systems,
particularly when integrated with the ISCO/ISTO mediator
framework. We briefly introduce the language and its under-
lying paradigm, assessing it from the angle of its antecedents:
Logic and Object-Oriented Programming. To further the point,
we focus on the use of implicit temporal information in ISTO
and show how this formalism can be used to enhance expres-
siveness. An implementation has been developed which is
being actively used in a real-world setting – Universidade de
Évora’s second generation web-based Academic Information
System, which we briefly report on. We conclude that the risks
taken in adopting a developing technology such as this for a
mission-critical system has paid off, in terms of both devel-
opment ease and flexibility as well as in maintenance require-
ments.

1 Introduction

In the process of devising a strategy for the gradual design and
deployment of SIIUE, an organizational information system for
Universidade déEvora, we were faced with hard choices: as
there are really no available ready-to-use solutions, some mea-
sure of in-house development was inevitable: Academic orga-
nizations have several specificities which are not well catered
for by existing ERP products. The adoption of an existing
methodology based on existing (commercial) tools was con-
sidered, but deemed to be rather inflexible and ultimately ex-
pensive in the long run, moreover, it would hardly build on
the known-how acquired through the developments which had
been locally initiated over the preceding years.

Our explicitly assumed option was to rely on open-source soft-
ware as much as possible, in order to avoid vendor lock-in and
to ensure that future developments could always be effected
using in-house competence. In doing so, we had to be very
careful in order to pick the most appropriate tool for each par-
ticular aspect of the project, always making sure that everything
should fit harmoniously.

The overall coordination of the various software components of
such a mixed system was critical to the success of the project:
this is where Logic Programming appears to be a very interest-

ing and promising choice. Early work on the design and de-
velopment of SIIUE [1] already indicated that it would benefit
from Logic Programming tools playing an increasingly central
part in the system. This observation, later confirmed by fur-
ther developments [2], led to incrementing the investment in
the technology which was at the base of the entire project: Pro-
log as the foundation of an Organizational Information System
specificationand implementationlanguage.

The benefits of Logic Programming are well known: the rapid
prototyping ability and the relative simplicity of program de-
velopment and maintenance, the declarative reading which fa-
cilitates both development and the understanding of existing
code, the built-in solution-space search mechanism, the close
semantic link with relational databases, just to name a few. The
realization that Logic Programming is a promising tool with
which to address this type of problem is not exclusive to Uni-
versidade déEvora’s project, as witness for instance the work
described in [14].

Our choice ofGNU Prolog as the basic tool with which to
develop our system was due to several factors, not the least
of which is its inclusion of a complementary problem-solving
paradigm: constraint programming. Constraints strengthen
the declarative programming facet of Prolog, providing ana-
priori search-space pruning model which complements thea-
posteriori depth-first backtracking search of classical Prolog
implementations of Logic Programming.

Nevertheless, the Prolog language suffers from a serious scal-
ability issue when addressing actual applications. There have
been several efforts over the years to overcome this limitation:
one which took many years to shape is the ISO standard for-
mulation ofmodulesfor Prolog. This standard can hardly be
considered satisfactory, being heavily influenced by previously
existing and conflicting implementations: it can be argued
that it essentially introduces the concept of “separate predicate
spaces,” which are reminiscent of ADA modules. Moreover,
the standard is syntactically very verbose, which in itself is a
very questionable departure from what we perceive to be one
of Prolog’s strengths: its syntactic simplicity. Moreover, it is
our opinion that the standard completely misses the opportu-
nity it had of assimilating closely related yet well established
and vastly more powerful concepts, such as the notions of Ob-
ject and Inheritance.

An interesting alternative solution to the same problem is that

of Contextual Logic Programming(CxLP), a model introduced
in the late 1980’s. Informally, the main point of CxLP is that
programs are structured as sets of predicates (units) which can
be dynamically combined in an execution attribute called a
context. Goals are seen just as in regular Prolog, except for
the fact that the matching predicates are to be located in all the
units which make up the current context.

We extended CxLP to attachargumentsto units: these serve the
dual purpose of acting as “unit-global” variables and as state
placeholders in actual contexts.

We usedGNU Prolog/CX to implement the newer components
of SIIUE: the redesigned Academic Services subsystem. This
article reports on the outcome of this initiative.

The remainder of the article is structured as follows: in sec-
tion 2 we describe how contexts constitute a useful extension
to Logic Programming, drawing it close to OOP. Section 3 in-
troduces the ISTO language. In section 4 an application – a uni-
versity’s Academic Services management system – is sketched.
Section 5 presents a very brief overview of the underlying tech-
nology which was developed to build the system on. Section 6
draws some concluding remarks and points at directions for fu-
ture work.

2 Contexts as Objects with State

The integration of the Object-Oriented and Logic Programming
paradigms has long been an active research area since the late
1980’s; take for example McCabe’s work [8]. The similarities
between Contextual Logic Programming and Object-Oriented
Programming have been focused several times in the litera-
ture; see for instance the work by Monteiro and Porto [10] or
Bugliesi [4].

Other than the implementation-centered reports, previous work
on Contextual Logic Programming focuses largely on issues
such as the policy for context traversal, what the context be-
comes once a unit satisfying the calling goal is found, what to
do when multiple units provide clauses for the same predicate,
how to automatically tie several units together or how to pro-
vide encapsulation and concealment mechanisms.

To the best of our knowledge, no published work earlier
than [3] builds on the notion of context arguments and their
widespread use, even though Miller’s initial work [9] already
mentions the possibility of using module variables. This fea-
ture was present as a “hack” in the first C-Prolog based imple-
mentation of Contextual Logic Programming but was a little
let down, possibly for lack of an adequate formalization and
the nonexistence of convincing examples.

Instead of viewing a context as an opaque execution attribute,
as happens in CSM [11] for instance, we choose to regard it
as a first-class entity, i.e. as a Prolog term. Not only is the
context accessible from the program, butit is intendedthat it
be explicitly manipulated in the course of a program’s regular
computation. The performance impact of this option will be
succinctly analyzed in section 5: at this point we shall concen-

trate on the possibilities it allows from an expressiveness point
of view, relating Contextual Logic Programming examples to
other paradigms whenever appropriate.

2.1 Contexts and Object-Oriented Languages

Table 1 establishes some parallels between Contextual Logic
Programming (CxLP) and Object-Oriented Programming
(OOP) terminology, pointing out how units, contexts and con-
text arguments can relate to OOP concepts. The most notable

OOP (Class) OOP (Prototype) CxLP
Object Object Context
Message Message Goal
Instance variable Named slot Unit argument
Method Method Predicate
Class - Context skeleton
Class member - Unit
Inheritance Object inheritance Context traversal
Class instantiation Object cloning Context term manipulation

Table 1: CxLP vs. OO paradigms (Class- and Prototype-based)

difference between the CxLP and the OOP paradigms has to
do with the concept ofinheritance: instead of being statically
defined as in the Class-based Object-Oriented languages, it is
completely dynamic for each context (i.e. “object”), as it de-
fines its own structure and, implicitly, its behaviour wrt. mes-
sages.

CxLP enables design approaches stemming from class-based
but mostly prototype-based or object-centered languages (ex-
amples of which include Self [15] and JavaScript) in that aunit
can be seen as akin to a class as it defines partial state and be-
haviour while acontext, as a self-sufficient object, can serve as
the basis for the creation of further contexts, either via the ex-
tension mechanism or by explicit manipulation of the context
term (e.g. a copy).

2.2 Encapsulation and Concealment

These issues are central in Object-Oriented Programming and
critical from the Software Engineering point of view. Earlier
approaches in Contextual Logic Programming languages pro-
posed several distinct mechanisms, along the lines of having an
annotation of some sort to indicate that a given predicate was to
be considered “visible” or “hidden”, in the sense that a context
traversal would see it or not.

Our approach of relying on deep contexts and unit arguments,
made possible by the relative efficiency of the prototype imple-
mentation, as described in [3], allows us to shun the introduc-
tion of yet another set of predicate annotations, because simpler
constructions are effectively available, through the use of unit
arguments and the context switch operation: all that is neces-
sary is that the context arguments supply sufficient informa-
tion for a new context to be built, in order to implement the

requested method without disclosing the details to the invoking
context.

2.3 Contexts as Implicit Computations

ISTO relies onGNU Prolog/CX as its compiler’s target lan-
guage and is further described by means of an application in
section 4.

Consider a unitperson(ID, NAME, BIRTH DATE) which de-
fines the following predicates:

• item/0 which returns, through backtracking, all instances
of theperson/3 database relation by instantiating unit ar-
guments,

• delete/0 which nondeterministically removes instances
of theperson/3 database relation, as restricted by the unit
arguments,

• insert/0 which inserts new instances into theperson/3
database relation, taking the values from the unit argu-
ment.

Accessing an “object” specified by a context is always done via
one of these predicates, which are to be evaluated in a context
which specifies the relation (in this caseperson/3). Assume
that there are also predicates with the same name and one ar-
gument, which represents the relevant unit with bound argu-
ments, i.e.item/1, delete/1 andinsert/1. An implementa-
tion of these predicates can rely on the standard Prolog internal
database manipulation built-ins or access an external database,
as is done in the ISCO compiler [2].

3 A Case for the ISTO Programming Language

ISCO [2] is a Logic Programming language geared towards the
development and maintenance of organizational information
systems. ISCO is an evolution of the previous language DL [1]
and is based on a Constraint Logic Programming framework to
define the schema, represent data, access heterogeneous data
sources and perform arbitrary computations. In ISCO, pro-
cesses and data are structured asclasseswhich are represented
as typed1 Prolog predicates. An ISCO class may map to an
external data source or sink, such as a table or view in a rela-
tional database, or be entirely implemented as a regular Pro-
log predicate. Operations pertaining to ISCO classes include a
querywhich is similar to a Prolog call as well as three forms
of update. These operations are syntactically specified as Pro-
log goals related to the predicate which stands for a particular
class.

Most (all?) life-size applications have time-related aspects: be
it historical records or information which is inherently temporal
in nature. Traditionally these issues are dealt with in an ad-hoc

1The type system applies to class members, which are viewed as Prolog
predicate arguments.

fashion, by “custom programming” solutions in the implemen-
tation language, which have to rely on sometimes unnatural
modifications to the application schema.

ISTO is a language which:

• Builds on the potential provided by combining contexts
and the ISCO class declarations and

• Effectively supports temporal aspects without burdening
the application schema and code.

3.1 Classes in ISTO

ISTO is very similar to ISCO, in that relation declarations are
used to produce access predicates, to be used as regular Prolog
goals. However, there is a twist, resulting from the inclusion
of the Contextual Logic Programming constructs: each class
declaration results in the transparent definition of an associated
unit, which allows for uniform access, via unique conventioned
predicate names associated with the admissible operations.

Contexts are very powerful constructs in that they provide a
very natural representation for parametric stored queries, see
for instance section 2.3 for a suggestion of what this means.

3.2 Time in ISTO

We are presently evolving ISCO to endow it with an expressive
means of representing and implicitly using temporal informa-
tion [12, 13], the resulting language is called ISTO.

ISTO uses CLP to express the constraints imposed by the
different temporal systems (for example: the Gregorian cal-
endar or 24–Hour timekeeping), for the evaluation of tem-
poral expressions or the conditional admissibility of partic-
ular tuples as solutions to goals. For instance, to rep-
resent the 24–Hour timekeeping system we use the triple
(HOUR,MINUTE,SECOND) of finite domain variables and
the constraint 0≤ HOUR≤ 23∧ 0 ≤ MINUTE ≤ 59∧ 0 ≤
SECOND≤ 59.

CxLP allows us to encapsulate the concepts stated above,
i.e. we have one unit for each temporal system, another for the
common temporal expressions, For instance, to represent
the weekends of January and February, 2004, we write:

date(D) :> (year(2004), month(M), M<3,
weekday(WD), member(WD, [sat, sun])).

In this example, we extend the initially empty context with
the unit date, and argument variableD that represents a tu-
ple(YEAR, MONTH, DAY). We subsequently constrainYEAR to
be equal to 2004 andMONTH to be one of the set[1,2], i.e., less
than 3. Finally we restrictDAY to be a Saturday or a Sunday,
i.e. belong to the weekend.

CxLP is also used to associate time with facts. As an example,
consider that we want to represent that a given lecturer (John)

teaches Logic Programming every Monday from 9 to 11, dur-
ing the odd semester of 2003/2004. Assuming that there is a
unit calledsemester that stores, for each academic year, the
start and end of each semester, the intended fact can expressed
by:

1 semester(odd, 2003) :> valid_time(I),
2 date_time(D) :> (weekday(mon),

hour(H), H >= 9, H <= 11),
3 temporal_expression(member(D, I)) :> true,
4 class_schedule(john, ’Logic Programming’) :> (

valid_time(D), insert).

We start by defining variableI as the temporal interval corre-
sponding to the odd semester of 2003/2004. We then spec-
ify variable D to be the recurring interval between 9AM and
11AM, of every Monday in the calendar. We then restrictD to
be within the intervalI. Finally, we insert the intended fact in
theclasse schedule database.

Now if we ask for all the dates when John teaches

"?- classes_schedule(’John’, _) :> (valid_time(D))."

then variableD should contain (at least) all the the Mondays, of
the Odd semester of 2003/2004, between 9AM and 11AM.

4 Universidade de Évora’s Academic Information System

GNU Prolog/CX has already seen actual use in a real-world
application: Universidade déEvora’s second generation Aca-
demic Information System, which is a project that got under
way in March 2003 and, at the time of this writing (October
2003), is already in production. This initiative was spurred by
the University’s decision to simultaneously reorganize all of its
undergraduate offerings, to comply with the “Bologna princi-
ples,” a goal which could not be met by the existing system
without very significant and resource-consuming overhauls.

The Academic Information System (SIIUE.sac) is part of
Universidade deÉvora’s Integrated Information System [1]
(SIIUE), being its latest component and a useful and diverse
testbed for the ISCO and ISTO languages.

4.1 The Academic Information System; SIIUE.sac

The architecture for the Academic Information System can be
summarized by figure 1: the different layers correspond to ac-
tual physically different networks, interfacing each pair of lay-
ers which have contact.

The physical separation is provided to ensure that access to
higher-numbered layers is exclusively performed by hosts on
the layer immediately below.

There is the requirement that, since all validation and autho-
rization is performed by the ISTO layer, the layers above only
access any application data via ISTO, hence the application
must have three layers, as seen in figure 2.

Layers 1 and 2 operate on multiple processors for better

Figure 1: Layers in ISTO

throughput. The ISTO (GNU Prolog/CX executable) processes
come from a pool where they perform initialization tasks before
becoming available as query processors, thereby bypassing the
overhead of some initialization chores, such as connecting to
database servers. It should be noted here thatGNU Prolog’s
architecture is very favourable to its usage as a Prolog imple-
mentation for this type of usage, because even complex pro-
grams2 load very fast, as they’re mostly native executable code
by virtue of the compilation approach, therefore shared by all
instances of the program.

Figure 2: SIIUE.sac Physical Organizational

ISTO programs may access relational data through ODBC us-
ing a GNU Prolog interface with unixODBC, which has been
developed within the SIIUE project: this allows for accessing
legacy data transparently. The executables are used from within
a (very thin) PHP wrapper script in web-based interfaces: the
PHP extensions have also been developed specifically for use
with ISTO.

Although most of the relational databases used are currently
built in PostgreSQL, other relational database engines where
considered. This requires ISTO to be independent from the

2In this case, a typical SIIUE.sac user interface program has around a hun-
dred thousand lines of code.

specific RDBMS engine being used. The ISTO compiler is
aware of the differences between relational database engines,
and generates SQL code appropriate to the specific back-end
being used, through the use of different units for each known
database back-end, building on similarities between some to
exploit multi-level specialization schemes provided by Contex-
tual Logic Programming, as for example in dealing with differ-
ent versions of the same RDBMS engine.

We fully integrated ISTO with the PiLLoW [5] library, a Pro-
log library for HTML/XML/SGML output and form handling,
which is used for web-based development. PiLLoW has been
ported toGNU Prolog.

4.2 SIIUE.sac from a Software Engineering Perspective

Universidade déEvora’s commitment to develop the SIIUE.sac
project was ascertained in early 2003 and the project itself got
under way in March 2003 with a team of three experienced
programmers. At that time, a complete rewrite of the ISTO
tools andGNU Prolog/CX had just recently been rendered oper-
ational and the development team had no experience with either
Contextual or Constraint Logic Programming, although they
had done a few toy projects with Prolog. The project was then
scheduled with quarterly milestones which targeted roughly:

1. The academic services internal use (e.g. graduation plans),

2. The student’s use (e.g. course registrations) and

3. The faculty members’ use (e.g. grading)

It was important that the schedule be met because this endeav-
our was considered mission-critical, as it involved unknowns at
various levels: the technology and tools were very new and the
development team was not familiar with the approach.

At the time of this writing, all of the project phases had com-
pleted successfully and were in production, having been stress-
tested with both the introduction of around 40 different grad-
uation plans ranging from Visual Arts to Veterinary Medicine,
some with very intricate structures, and the registration for in-
dividual courses by approximately 6000 students, averaging 10
courses per student. Anecdotically, the most stressful moment
was the first day of the student registration period, the load peak
resulted in a minor problem which was resolved in under one
hour.

The experience we drew from the deployment of this first ap-
plication can be summed up in a few points:

• The re-use, whenever appropriate, of existing well-
established software components such as Apache, PHP,
PiLLoW and LATEX was essential as it saved us a lot of
specification and implementation effort.

• Contextual Logic Programming played a key role in the
overall incremental design and implementation process; a
few aspects deserve explicit mention:

– The representation of user sessions as contexts was
a significant success, as the concept of session can
very naturally be expressed as a context.

– Role-based authorization and interface generation
gained plenty of flexibility and reliability from the
systematic use of contexts.

– Coding the “business logic” as units that respond to
standardized messages (e.g. theitem/1 predicate)
enabled us to design compositionally and made it
relatively easy to rework implementations and re-
structure processes while preserving an unchanging
interface.

• The choice of relegating the RDBMS to the role of persis-
tency provider for ISTO appears to have been the correct
one. This became particularly obvious at one stage, where
an “SQL-like” design (structures represented as a collec-
tion of tuples or facts) was replaced with a more “Prolog-
like” one (structures represented as a single large term):
performance on a particular benchmark went up by a fac-
tor of 10 to 100 with that single change, the gain is mostly
attributable to reduced database traffic.

• The relative ease with which programmers used to pro-
cedural languages and SQL adopted a little-documented
paradigm and still very experimental development tools
was surprising, as they became productive very early in
the development cycle.

5 Some notes on the the GNU Prolog/CX Prototype

In order to experiment programming with contexts we have de-
veloped a first prototype insideGNU Prolog [7]. Our main goal
was to have a light implementation modifying the current sys-
tem as little as possible. Due to space restrictions we only give
here an overview, the interested reader can consult [3] for more
details.

The main change concerns a call to a given predicateP/N. If
there is no definition forP/N in the global predicate table (con-
taining all built-in predicates and predicates not defined inside
a unit) then the context must be scanned until a definition is
found.

Time CSM
N (sec) perf. loss perf. loss
0 0.971 0.0% 0.0%
1 0.986 1.5% 10.3%
2 1.004 3.4% 20.6%
5 1.043 7.4% 51.6%
10 1.102 13.5% n/a
20 1.235 27.2% n/a
50 1.595 64.3% n/a
100 2.238 130.5% n/a

Table 2: Varying context depth

To evaluate
the context im-
plementation,
we followed a
methodology
similar to that
of Denti et
al. [6]: a goal
is evaluated in
a context which
is made up of
a unit which
implements the
goal predicate, below a variable number of “dummy” units

which serve to test the overhead introduced by the context
search. We used the exact same benchmark as in [6]. The
results shown in table 2 correspond to average of 10 runs on
a 1GHz Pentium III running Linux. The observed relative
performance is much better inGNU Prolog/CX: even in CSM’s
most favorable situation (the modified WAM), there is a 50%
performance hit as soon as there are 5 “dummy” units in the
context. Finally note that the “50% performance degradation”
threshold is reached when the context comprises about 40
dummy units. This demonstrates the effective ability to
extensively usedeep contextsin actual applications, and is
a sine qua nonrequirement for the practical use of such a
language feature.

6 Conclusions and Future Developments

ISTO has been successfully used in the design and development
of a mission-critical information system. The conclusions we
can draw from the experience we’ve gained so far include:

• A large application such as SIIUE.sac can bring out
fragilities in the implementation of the tools it uses: such
was the case, for instance, withGNU Prolog/CX in which
a few hitherto unnoticeable bugs became manifest (and
were fixed.)

• The work-in-progress status of some of the tools, most
notably GNU Prolog/CX, turned outnot to be a serious
hindrance, as the design discipline made up for the lack of
features such as an effective debugger.

• GNU Prolog/CX and ISTO are well suited to o incremen-
tal OO design, as a system can become operational even
while still incomplete and underspecified.

• One feature often touted as a must-have for Prolog imple-
mentations is the (heap) garbage collector: the lack of one
turned out not to be a limiting factor, as Prolog processes
have relatively short lifetimes: they only need to compute
one individual page in a session, the continuation being
served by the next process.

• Complex SQL code generation is not as important a goal
as we initially thought it would, because it can largely be
compensated by the judicious use of the result of simple
queries.

• The gradual adoption of Contextual Logic Programming
as a design and programming paradigm has exhibited not
too steep a learning curve and is allowing us to further
our sensitivity to its different applicability situations and
program patterns. Some of these reflect back onto the lan-
guage itself.

• The developers did have to rid themselves from SQL and
procedural language habits, namely in what concerns the
manipulation of more complex data structures, in order to
extract acceptable performance from the system.

Now that the first full-size application is finished, some direc-
tions become apparent for the future development of ISTO and
GNU Prolog/CX, as the scope of their use widens:

• The removal of some implementation-specific limits
(e.g. area sizes) and some low-level extensions such as
the dynamic loading of compiled Prolog code, which will
allow for on-the-fly extension of compiled applications or
multi-thread execution.

• The development of a generic web-based relation browser,
as this will greatly decrease interface development time
which has – once again – proven to constitute the bulk of
the development effort.

• A more extensive performance analysis and tuning under
load.

Acknowledgements

The work described herein was partly made possible by the bi-
lateral INRIA/GRICES project “Extensions au Logiciel Libre
GNU Prolog.” Universidade déEvora is acknowledged for sup-
porting and funding the SIIUE.sac project.

References

[1] Salvador Abreu. A Logic-based Information System. In
Enrico Pontelli and Vitor Santos-Costa, editors,2nd Inter-
national Workshop on Practical Aspects of Declarative
Languages (PADL’2000), volume 1753 ofLecture Notes
in Computer Science, pages 141–153, Boston, MA, USA,
January 2000. Springer-Verlag.

[2] Salvador Abreu. Isco: A practical language for heteroge-
neous information system construction. InProceedings
of INAP’01, Tokyo, Japan, October 2001. INAP.

[3] Salvador Abreu and Daniel Diaz. Objective: in Minimum
Context. In Catuscia Palamidessi, editor,Logic Program-
ming, 19th International Conference, ICLP 2003, Mum-
bai, India, December 9-13, 2003, Proceedings, volume
2916 ofLecture Notes in Computer Science, pages 128–
147. Springer-Verlag, 2003. ISBN 3-540-20642-6.

[4] M. Bugliesi. A declarative view of inheritance in logic
programming. In Krzysztof Apt, editor,Proceedings of
the Joint International Conference and Symposium on
Logic Programming, pages 113–127, Washington, USA,
1992. The MIT Press.

[5] Daniel Cabeza and Manuel Hermenegildo. Dis-
tributed WWW programming using (Ciao-)Prolog and
the PiLLoW library. Theory and Practice of Logic Pro-
gramming, 1(3):251–282, May 2001.

[6] Enrico Denti, Evelina Lamma, Paola Mello, Antonio Na-
tali, and Andrea Omicini. Techniques for implement-
ing contexts in Logic Programming. In Evelina Lamma

and Paola Mello, editors,Extensions of Logic Program-
ming, volume 660 ofLNAI, pages 339–358. Springer-
Verlag, 1993. 3rd International Workshop (ELP’92), 26–
28 February 1992, Bologna, Italy, Proceedings.

[7] Daniel Diaz and Philippe Codognet. Design and imple-
mentation of the gnu prolog system.Journal of Func-
tional and Logic Programming, 2001(6), October 2001.

[8] Francis G. McCabe.Logic and Objects. Prentice Hall,
1992.

[9] Dale Miller. A logical analysis of modules in logic pro-
gramming. The Journal of Logic Programming, 6(1 and
2):79–108, January/March 1989.

[10] Luı́s Monteiro and Ant́onio Porto. A Language for Con-
textual Logic Programming. In K.R. Apt, J.W. de Bakker,
and J.J.M.M. Rutten, editors,Logic Programming Lan-
guages: Constraints, Functions and Objects, pages 115–
147. MIT Press, 1993.

[11] Antonio Natali and Andrea Omicini. Objects with State in
Contextual Logic Programming. In Maurice Bruynooghe
and Jaan Penjam, editors,Programming Language Im-
plementation and Logic Programming, volume 714 of
LNCS, pages 220–234. Springer-Verlag, 1993. 5th In-
ternational Symposium (PLILP’93), 25–27 August 1993,
Tallinn, Estonia, Proceedings.

[12] Vitor Beires Nogueira, Salvador Abreu, and Gabriel
David. Towards Temporal Reasoning in ISCO. InPro-
ceedings of AGP’02, Madrid, Spain, 2002. FI/UPM.

[13] Vitor Beires Nogueira, Salvador Abreu, and Gabriel
David. Using Contextual Logic Programming for Tempo-
ral Reasoning. In Ernesto Pimentel and Nieves R. Bris-
aboa, editors,VIII Conference on Software Engineering
and Databases (JISBD 2003), Alicante, Spain, Novem-
ber 2003.

[14] António Porto. An Integrated Information System Pow-
ered by Prolog. In Veŕonica Dahl and Philip Wadler, edi-
tors,Practical Aspects of Declarative Languages, 5th In-
ternational Symposium, PADL 2003, New Orleans, LA,
USA, January 13-14, 2003, Proceedings, volume 2562
of Lecture Notes in Computer Science, pages 92–109.
Springer, 2003.

[15] David Ungar and Randall B. Smith. Self: The Power of
Simplicity. In Norman K. Meyrowitz, editor,Conference
on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’87), October 4-8, 1987, Or-
lando, Florida, Proceedings, volume 22 ofSIGPLAN No-
tices, pages 227–242, December 1987.

	Introduction
	Contexts as Objects with State
	Contexts and Object-Oriented Languages
	Encapsulation and Concealment
	Contexts as Implicit Computations

	A Case for the ISTO Programming Language
	Classes in ISTO
	Time in ISTO

	Universidade de Évora's Academic Information System
	The Academic Information System; SIIUE.sac
	SIIUE.sac from a Software Engineering Perspective

	Some notes on the the GNU Prolog/CX Prototype
	Conclusions and Future Developments

